Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Total Environ ; 932: 173094, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729378

RESUMEN

The SDG 15.3.1 target of Land Degradation Neutrality (LDN) only has 15 years from conception (in 2015) to realization (in 2030). Therefore, investigating the effectiveness and challenges of LDN has become a priority, especially in drylands, where fragile ecosystems intersect with multiple disturbances. In this study, solutions are proposed and validated based on the challenges of LDN. We chose the Northern Slope of the Tianshan Mountains as a case study and set baselines in 2005 and 2010. The region and degree of land change (including degraded, stable, and improved) were depicted at the pixel scale (100 × 100 m), and LDN realization was assessed at the regional scale (including administrative districts and 5000 × 5000 m grids). The results showed a significant disparity between the two baselines. The number of areas that realized the LDN target was rare, regardless of the scale of the administrative districts or grids. Chord plots, Spearman's correlation, and curve estimation were employed to reveal the relationship between LDN and seven natural or socioeconomic factors. We found that substantial degradation was closely related to the expansion of unused, urban, and mining land and reduction in water, glaciers, and forests. Further evidence suggests that agricultural development both positively and negatively affects LDN, whereas urbanization and mining activities are undesirable for LDN. Notably, the adverse effects of glacier melting require additional attention. Therefore, we consider the easy-to-achieve and hard-to-achieve baselines as the mandatory and desirable targets of LDN, respectively, and focus further efforts in three aspects: preventing agricultural exploitation from occupying ecological resources, defining reasonable zones for urbanization and mining, and reducing greenhouse gas emissions to mitigate warming. Overall, this study is expected to be a beneficial addition to existing LDN theoretical systems and serve as a case validation of the challenges of LDN in drylands.

2.
J Transl Med ; 21(1): 876, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041179

RESUMEN

BACKGROUND: Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. METHODS: Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. RESULTS: Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. CONCLUSION: Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Tigeciclina/farmacología , Tigeciclina/metabolismo , Tigeciclina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular , Células Neoplásicas Circulantes/metabolismo , Proliferación Celular/genética , Células Hep G2 , Mitocondrias/metabolismo , Línea Celular , Línea Celular Tumoral , Apoptosis , Regulación Neoplásica de la Expresión Génica , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/farmacología
3.
Math Biosci Eng ; 20(7): 12802-12819, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37501467

RESUMEN

In order to further promote the application and development of unmanned aviation in the manned field, and reduce the difficulty that airlines cannot avoid due to unexpected factors such as bad weather, aircraft failure, and so on, the problem of restoring aircraft routes has been studied. To reduce the economic losses caused by flight interruption, this paper divides the repair problem of aircraft operation plans into two sub problems, namely, the generation of flight routes and the reallocation of aircraft. Firstly, the existing fixed-point iteration method proposed by Dang is used to solve the feasible route generation model based on integer programming. To calculate quickly and efficiently, a segmentation method that divides the solution space into mutually independent segments is proposed as the premise of distributed computing. The feasible route is then allocated to the available aircraft to repair the flight plan. The experimental results of two examples of aircraft fault grounding and airport closure show that the method proposed in this paper is effective for aircraft route restoration.

4.
Huan Jing Ke Xue ; 44(6): 3386-3395, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37309956

RESUMEN

Vegetation restoration can effectively improve the ecological environment of mining areas, enhance the ecological service function, and promote the carbon sequestration and sink increase in the ecosystem. The soil carbon cycle plays an important role in the biogeochemical cycle. The abundance of functional genes can predict the material cycling potential and metabolic characteristics of soil microorganisms. Previous studies on functional microorganisms have mainly focused on large ecosystems such as farmland, forest, and wetland, but relatively little attention has been paid to complex ecosystems with great anthropogenic interference and special functions, such as mines. Clarifying the succession and driving mechanism of functional microorganisms in reclaimed soil under the guidance of vegetation restoration is helpful to fully explore how functional microorganisms change with the change in abiotic and biotic conditions. Therefore, 25 topsoil samples were collected from grassland (GL), brushland (BL), coniferous forests (CF), broadleaf forests (BF), and mixed coniferous and broadleaf forests (MF) in the reclamation area of the Heidaigou open pit waste dump on the Loess Plateau. The absolute abundance of soil carbon cycle functional genes was determined using real-time fluorescence quantitative PCR to explore the effect of vegetation restoration on the abundance of carbon cycle-related functional genes in soil and its internal mechanism. The results showed that:① the effects of different vegetation restoration types on the chemical properties of reclaimed soil and the abundance of functional genes related to the carbon cycle were significantly different (P<0.05). GL and BL showed significantly better accumulation of soil organic carbon, total nitrogen, and nitrate nitrogen (P<0.05) than that in CF. ② The gene abundance of rbcL, acsA, and mct was the highest among all carbon fixation genes. The abundance of functional genes related to carbon cycle in BF soil was higher than that in other types, which was closely related to the high activity of ammonium nitrogen and BG enzymes and the low activity of readily oxidized organic carbon and urease in BF soil. The functional gene abundance of carbon degradation and methane metabolism was positively correlated with ammonium nitrogen and BG enzyme activity and negatively correlated with organic carbon, total nitrogen, readily oxidized organic carbon, nitrate nitrogen, and urease activity (P<0.05). ③ Different vegetation types could directly affect soil BG enzyme activity or affect soil nitrate nitrogen content, thus indirectly affecting BG enzyme activity, in turn manipulating the abundance of functional genes related to the carbon cycle. This study is helpful to understand the effects of different vegetation restoration types on the functional genes related to the carbon cycle in the soil of mining areas on the Loess Plateau and provides a scientific basis for ecological restoration and ecological carbon sequestration and sink enhancement in mining areas.


Asunto(s)
Ecosistema , Suelo , Carbono , Nitratos , Ureasa , Ciclo del Carbono , Bosques , Nitrógeno
5.
Plants (Basel) ; 12(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36987058

RESUMEN

Anthropogenic climate change and species invasion are two major threats to biodiversity, affecting the survival and distribution of many species around the world. Studying the responses of invasive species under climate change can help better understand the ecological and genetic mechanisms of their invasion. However, the effects of warming and phosphorus deposition on the phenotype of native and invasive plants are unknown. To address the problem, we applied warming (+2.03 °C), phosphorus deposition (4 g m-2 yr-1 NaH2PO4), and warming × phosphorus deposition to Solidago canadensis and Artemisia argyi to measure the direct effects of environmental changes on growth and physiology at the seedling stage. Our results reveal that the physiology parameters of A. argyi and S. canadensis did not change significantly with the external environment. Under phosphorus deposition, S. canadensis had higher plant height, root length, and total biomass compared to A. argyi. Interestingly, warming has an inhibitory effect on the growth of both A. argyi and S. canadensis, but overall, the reduction in total biomass for S. canadensis (78%) is significantly higher than A. argyi (52%). When the two plants are treated with warming combined with phosphorus deposition, the advantage gained by S. canadensis from phosphorus deposition is offset by the negative effects of warming. Therefore, under elevated phosphorus, warming has a negative effect on the invasive S. canadensis and reduces its growth advantage.

6.
Chin Geogr Sci ; 33(2): 333-350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36974306

RESUMEN

For mankind's survival and development, water, energy, and food (WEF) are essential material guarantees. In China, however, the spatial distribution of WEF is seriously unbalanced and mismatched. Here, a collaborative governance mechanism that aims at nexus security needs to be urgently established. In this paper, the Yellow River Basin in China with a representative WEF system, was selected as a case. Firstly, a comprehensive framework for WEF coupling coordination was constructed, and the relationship and mechanism between them were analyzed theoretically. Then, we investigated the spatiotemporal characteristics and driving mechanisms of the coupling coordination degree (CCD) with a composite evaluation method, coupling coordination degree model, spatial statistical analysis, and multiscale geographic weighted regression. Finally, policy implications were discussed to promote the coordinated development of the WEF system. The results showed that: 1) WEF subsystems showed a significant imbalance of spatial pattern and diversity in temporal changes; 2) the CCD for the WEF system varied little and remained at moderate coordination. Areas with moderate coordination have increased, while areas with superior coordination and mild disorder have decreased. In addition, the spatial clustering phenomenon of the CCD was significant and showed obvious characteristics of polarization; and 3) the action of each factor is self-differentiated and regionally variable. For different factors, GDP per capita was of particular importance, which contributed most to the regional development's coupling coordination. For different regions, GDP per capita, average yearly precipitation, population density, and urbanization rate exhibited differences in geographical gradients in an east-west direction. The conclusion can provide references for regional resource allocation and sustainable development by enhancing WEF system utilization efficiency.

7.
Front Immunol ; 14: 1335546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274836

RESUMEN

Background: Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) is associated with favorable outcomes in breast cancer patients. Identifying reliable predictors for pCR can assist in selecting patients who will derive the most benefit from NAC. The prognostic nutritional index (PNI) serves as an indicator of nutritional status and systemic immune competence. It has emerged as a prognostic biomarker in several malignancies; however, its predictive value for pCR in breast cancer remains uncertain. The objective of this study is to assess the predictive value of pretreatment PNI for pCR in breast cancer patients. Methods: A total of 1170 patients who received NAC in two centers were retrospectively analyzed. The patients were divided into three cohorts: a training cohort (n=545), an internal validation cohort (n=233), and an external validation cohort (n=392). Univariate and multivariate analyses were performed to assess the predictive value of PNI and other clinicopathological factors. A stepwise logistic regression model for pCR based on the smallest Akaike information criterion was utilized to develop a nomogram. The C-index, calibration plots and decision curve analysis (DCA) were used to evaluate the discrimination, calibration and clinical value of the model. Results: Patients with a high PNI (≥53) had a significantly increased pCR rate (OR 2.217, 95% CI 1.215-4.043, p=0.009). Tumor size, clinical nodal status, histological grade, ER, Ki67 and PNI were identified as independent predictors and included in the final model. A nomogram was developed as a graphical representation of the model, which incorporated the PNI and five other factors (AIC=356.13). The nomogram demonstrated satisfactory calibration and discrimination in the training cohort (C-index: 0.816, 95% CI 0.765-0.866), the internal validation cohort (C-index: 0.780, 95% CI 0.697-0.864) and external validation cohort (C-index: 0.714, 95% CI 0.660-0.769). Furthermore, DCA indicated a clinical net benefit from the nomogram. Conclusion: The pretreatment PNI is a reliable predictor for pCR in breast cancer patients. The PNI-based nomogram is a low-cost, noninvasive tool with favorable predictive accuracy for pCR, which can assist in determining individualized treatment strategies for breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Evaluación Nutricional , Nomogramas , Pronóstico , Estudios Retrospectivos
8.
Plants (Basel) ; 13(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38202380

RESUMEN

The legacy effects of invasive plant species can hinder the recovery of native communities, especially under nitrogen deposition conditions, where invasive species show growth advantages and trigger secondary invasions in controlled areas. Therefore, it is crucial to thoroughly investigate the effects of nitrogen deposition on the legacy effects of plant invasions and their mechanisms. The hypotheses of this study are as follows: (1) Nitrogen deposition amplifies the legacy effects of plant invasion. This phenomenon was investigated by analysing four potential mechanisms covering community system structure, nitrogen metabolism, geochemical cycles, and microbial mechanisms. The results suggest that microorganisms drive plant-soil feedback processes, even regulating or limiting other factors. (2) The impact of nitrogen deposition on the legacy effects of plant invasions may be intensified primarily through enhanced nitrogen metabolism via microbial anaerobes bacteria. Essential insights into invasion ecology and ecological management have been provided by analysing how nitrogen-fixing bacteria improve nitrogen metabolism and establish sustainable methods for controlling invasive plant species. This in-depth study contributes to our better understanding of the lasting effects of plant invasions on ecosystems and provides valuable guidance for future ecological management.

9.
Front Plant Sci ; 13: 1017554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407577

RESUMEN

Changes in temperature and nitrogen (N) deposition determine the growth and competitive dominance of both invasive and native plants. However, a paucity of experimental evidence limits understanding of how these changes influence plant invasion. Therefore, we conducted a greenhouse experiment in which invasive Solidago canadensis L. was planted in mixed culture with native Artemisia argyi Levl. et Van under combined conditions of warming and N addition. Our results show that due to the strong positive effect of nitrogen addition, the temperature increases and nitrogen deposition interaction resulted in greatly enhanced species performance. Most of the relative change ratios (RCR) of phenotypic traits differences between S. canadensis and A. argyi occur in the low invasion stage, and six of eight traits had higher RCR in response to N addition and/or warming in native A. argyi than in invasive S. canadensis. Our results also demonstrate that the effects of the warming and nitrogen interaction on growth-related traits and competitiveness of S. canadensis and A. argyi were usually additive rather than synergistic or antagonistic. This conclusion suggests that the impact of warming and nitrogen deposition on S. canadensis can be inferred from single factor studies. Further, environmental changes did not modify the competitive relationship between invasive S. canadensis and native A. argyi but the relative yield of S. canadensis was significantly greater than A. argyi. This finding indicated that we can rule out the influence of environmental changes such as N addition and warming which makes S. canadensis successfully invade new habitats through competition. Correlation analysis showed that invasive S. canadensis may be more inclined to mobilize various characteristics to strengthen competition during the invasion process, which will facilitate S. canadensis becoming the superior competitor in S. canadensis-A. argyi interactions. These findings contribute to our understanding of the spreading of invasive plants such as S. canadensis under climate change and help identify potential precautionary measures that could prevent biological invasions.

10.
Sci Rep ; 12(1): 17345, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243891

RESUMEN

In this paper, a dual-frequency wireless power transfer method is proposed, capable of achieving controllable routing and providing power through magnetic coupling resonance to various positions on a two-dimensional plane. The plane is composed of multiple power supply units with a uniform structure. Every unit has two different resonant states to switch, an activated state to power the receiver and a low-power inactive state adopted to maintain power required for state-switching. By switching and combining units in different states through wireless control circuits, directional wireless transfer of power on the plane can be realized. The circuit of power transfer through coupling is modelled and analysed. Electromagnetic simulations are conducted, followed by implementation and test of an experimental system. Both single-receiver and multiple-receiver situations are applicable in this method. The highest transmission efficiency can reach 93.3% under single receiver situation after coupling 5 units, which reveals satisfactory ability in flexibility and efficiency. Embedded in multiple application scenes, we envision further possibilities of this method such as indoor-device wireless charging and free-moving robot charging systems in factories.

11.
Sci Rep ; 12(1): 18010, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289361

RESUMEN

To improve the space attitude adjustment efficiency of the robot designed in this study, the average water level height variation of each ballast tank during the rescue process and the ballast water filling mass before the rescue process are taken as optimization variables, the minimal ballasting time during rescue process as the optimisation objective, and the heel and trim inclination angle, and stability in the rescue process as the constraint conditions. For the first time, an optimization method of a rescue robot space attitude adjustment scheme based on a dynamic programming algorithm is proposed. Relevant experiments and data collection were carried out with a model robot with a physical ratio of 1:2. MATLAB simulation and model robot experimental results show that compared with an empirical scheme, the total deployment time and ballast water total allocation mass are reduced by 11.07% and 30.79%, respectively, and the heel and trim angle variation stability is increased by 4.18% and 8.67%, respectively. The optimization model and algorithm are beneficial to improve the space attitude adjustment efficiency and stability of the rescue robot in this paper, and it is also easier to transfer to other fields of ballast water allocation, which has strong practical engineering significance.


Asunto(s)
Robótica , Algoritmos , Simulación por Computador , Agua , Actitud
12.
ACS Appl Mater Interfaces ; 14(33): 37667-37680, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35968674

RESUMEN

The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La3+-doped three-dimensionally ordered macroporous CeO2 (3D-Ce1-xLaxO2-δ) were synthesized and applied as supports for Pt nanoparticles. The pieces of evidence from a suite of in-situ/ex-situ characterizations and theoretical calculations revealed that the La3+-mono-substituted La-□(-Ce)2 sites (where □ represents an oxygen vacancy) exhibited superior charge transfer ability, behaving as trapping centers for Pt nanoparticles. The resulting interfacial Ptδ+/La-□(-Ce)2 sites served as the reversible active species in the aerobic oxidation of 5-hydroxymethylfurfural to boost catalytic performance by simultaneously promoting oxygen activated capacity and the cleavage of O-H/C-H bonds of adsorbed hydroxymethyl groups. Consequently, the Pt/3D-Ce0.9La0.1O2-δ catalyst possessing the highest number of Ptδ+/La-□(-Ce)2 sites showed the best catalytic performance with 99.6% yield to 2,5-furandicarboxylic acid in 10 h. These results offer more insights into the promoting mechanism of interfacial oxygen-defective sites for the liquid-phase aerobic oxidation of aldehydes and alcohols.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121587, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797948

RESUMEN

In this test, the eggshell membrane (ESM) is selected as the support membrane for the biocompatibility and anchors CNTs on the surface to increase the mechanical properties. Then Ag NPs are decorated on CNTs-ESM substrate as SERS substrate by twice in-situ reduction. Finally, a layer of imprinted polymers is coated on the surface of the substrate to synthesize the imprinted membrane for selective detection of spiramycin. It is exhibited from the characteristic results that the CNTs significantly increase the mechanical properties and the detection sensitivity, simultaneously. When the concentration of SP changes between 10-6 âˆ¼ 10-11 M, there is a linear relationship between SERS intensity and SP concentration. The detection limit is 10-11 M, and the correlation coefficient R2 is 0.9864. The SERS imprinted membrane can be applied into the detection of antibiotics in practical sample, which broadens the research field of antibiotics detection.


Asunto(s)
Impresión Molecular , Espiramicina , Antibacterianos , Impresión Molecular/métodos , Polímeros/química , Espectrometría Raman/métodos
14.
Dis Markers ; 2022: 9141117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677632

RESUMEN

Background: The importance of pyroptosis in tumorigenesis and cancer progression is becoming increasingly apparent. However, the efficacy of using pyroptosis-related genes (PRGs) in predicting the prognosis of pancreatic adenocarcinoma (PAAD) patients is unknown. Methods: This investigation used two databases to obtain expression data for PAAD patients. Differentially expressed PRGs (DEPRGs) were identified between PAAD and control samples. Several bioinformatic approaches were used to analyze the biological functions of DEPRGs and to identify prognostic DERPGs. A miRNA-prognostic DEPRG-transcription factor (TF) regulatory network was created via the miRNet online tool. A risk score model was created after each patient's risk score was calculated. The microenvironments of the low- and high-risk groups were assessed using xCell, the expression of immune checkpoints was determined, and gene set variation analysis (GSVA) was performed. Finally, the efficacy of certain potential drugs was predicted using the pRRophetic algorithm, and the results in the high- and low-risk groups were compared. Results: A total of 13 DEPRGs were identified between PAAD and control samples. Functional enrichment analysis showed that the DEPRGs had a close relationship with inflammation. In univariate and multivariate Cox regression analyses, GSDMC, IRF1, and PLCG1 were identified as prognostic biomarkers in PAAD. The results of the miRNA-prognostic DEPRG-TF regulatory network showed that GSDMC, IRF1, and PLCG1 were regulated by both specific and common miRNAs and TFs. Based on the risk score and other independent prognostic indicators, a nomogram with a good ability to predict the survival of PAAD patients was developed. By evaluating the tumor microenvironment, we observed that the immune and metabolic microenvironments of the two groups were substantially different. In addition, individuals in the low-risk group were more susceptible to axitinib and camptothecin, whereas lapatinib might be preferred for patients in the high-risk group. Conclusion: Our study revealed the prognostic value of PRGs in PAAD and created a reliable model for predicting the prognosis of PAAD patients. Our findings will benefit the prognostication and treatment of PAAD patients.


Asunto(s)
Adenocarcinoma , MicroARNs , Neoplasias Pancreáticas , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/patología , Proteínas Citotóxicas Formadoras de Poros , Pronóstico , Piroptosis , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Talanta ; 249: 123676, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738206

RESUMEN

A novel SERS membrane is synthesized by combining metal lattice and surface enhanced Raman scattering (SERS) technology. Since R6G is a carcinogenic and harmful pollutant, and traditional detection methods have many drawbacks and have research value, this paper selects R6G as the detection target. The SERS substrates are synthesized by loading Au nanoparticles (Au NPs) on the surface of polyvinylidene fluoride (PVDF) membrane. The Au NPs are synthesized through a controllable hydrothermal method. The synthesized AuNPs are covered by some gold particles, forming a fold pattern. Finally, the synthesized structure is immobilized on the surface of the PVDF membrane by the phase inversion method. It is suggested that the prepared Au NPs@PVDF membrane exhibits adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, prominent SERS performances. The prepared Au NPs@PVDF membrane showed sensitive SERS activity, good mechanical strength and reusability, expanding the application field of SERS detection. Overall, this study establishes a novel technique for the synthesis of SERS membrane with excellent SERS property and expands the application field of SERS detection.


Asunto(s)
Oro , Nanopartículas del Metal , Polímeros de Fluorocarbono , Oro/química , Nanopartículas del Metal/química , Polivinilos , Plata/química , Espectrometría Raman/métodos
16.
Chemosphere ; 303(Pt 2): 135023, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35605726

RESUMEN

The toxicological impacts of microplastics (MPs) and antibiotics in the soil environment have gradually drawn widespread attention, while little research has focused on the combined pollution of MPs and antibiotics on plants. In this work, a 21-day hydroponic study was conducted to test the hypothesis that polystyrene MPs (0.1, 1 and 10 µm particle sizes, 50 mg/L) and ciprofloxacin (CIP) (1.0 and 5.0 mg/L) had a joint toxicity to wheat seedlings and they could be absorbed by wheat. Plant samples were taken for analyses after 21 days of exposure. The results showed that 0.1 and 1 µm MP could enter wheat roots but only the former could translocate to aerial parts. Moreover, 0.1 µm MP showed a greater toxicity effect than 1 µm MP, whereas 10 µm MP exhibited little toxicity on wheat. The dosing of 0.1 µm MP significantly increased the toxic effects of CIP to wheat. Compared to the control treatment (without MPs and CIP), 0.1 µm MPs-5.0 mg/L CIP treatment resulted in inhibition of root length and weight by 60.1% and 44.3%, respectively, while the contents of chlorophyll a and chlorophyll b decreased by 36.3% and 44.6%, respectively. The presence of CIP (5.0 mg/L) potentially aggravated the combined toxicity. The exposure of 0.1 µm MP significantly reduced root superoxide distumase activity but increased root malondialdehyde content. The amount of CIP in wheat tissues carried by MPs was negligible compared with the uptake quantity of CIP by wheat.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Antibacterianos , Clorofila A/análisis , Ciprofloxacina/análisis , Ciprofloxacina/toxicidad , Hidroponía , Plásticos/toxicidad , Poliestirenos/análisis , Triticum , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Front Microbiol ; 13: 770715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432266

RESUMEN

Mining activity has caused serious environmental damage, particularly for soil ecosystems. How the soil fungal community evolves in mine reclamation and what are the succession patterns of molecular ecological networks still needs to be studied in depth. We used high-throughput sequencing to explore the changes in soil fungal communities, molecular ecological networks, and interactions with soil environmental factors in five different ages (the including control group) during 14 years of reclamation in eco-fragile mines. The results showed that the abundance and diversity of soil fungi after 14 years of reclamation were close to, but still lower than, those in the undisturbed control area, but the dominant phylum was Ascomycota. Soil nitrate-N, C/N ratio, pH, and water content significantly affected the fungal community with increasing reclamation ages. Moreover, we found that Mortierellomycota, despite its high relative abundance, had little significant connectivity with other species in the molecular ecological network. Fungal molecular ecological networks evolve with increasing ages of reclamation, with larger modules, more positive connections, and tighter networks, forming large modules of more than 60 nodes by age 9. The large modules were composed mainly of Ascomycota and Basidiomycota, which can form mycorrhiza with plant roots, and are not only capable of degrading pollution but are also "encouraged" by most (more than 64%) physicochemical factors in the soil environment. The results can provide a basis for scientific mine ecological restoration, especially for eco-fragile regions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35055677

RESUMEN

The polyacrylonitrile/fly ash composite was synthesized through solution polymerization and was modified with NH2OH·HCl. The amidoxime-modified polyacrylonitrile/fly ash composite demonstrated excellent adsorption capacity for Zn2+ in an aqueous medium. Fourier transform-Infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray diffraction, and scanning electron microscopy were used to characterize the prepared materials. The results showed that the resulting amidoxime-modified polyacrylonitrile/fly ash composite was able to effectively remove Zn2+ at pH 4-6. Adsorption of Zn2+ was hindered by the coexisting cations. The adsorption kinetics of Zn2+ by Zn2+ followed the pseudo-second order kinetic model. The adsorption process also satisfactorily fit the Langmuir model, and the adsorption process was mainly single layer. The Gibbs free energy ΔG0, ΔH0, and ΔS0 were negative, indicating the adsorption was a spontaneous, exothermic, and high degree of order in solution system.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Resinas Acrílicas , Adsorción , Ceniza del Carbón/química , Concentración de Iones de Hidrógeno , Cinética , Oximas , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
19.
Aging (Albany NY) ; 14(2): 989-1013, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35085103

RESUMEN

BACKGROUND: Pyroptosis is a new form of programmed cell death (PCD), also known as cellular inflammatory necrosis. Its discovery has resulted in a novel approach to the progression and medication resistance of breast cancer (BC). However, there is still a significant gap in the investigation of pyroptosis-related genes in BC. METHODS: The mRNA expression profiles and clinical data of BC patients were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Then, using the TCGA cohort, we created a predictive multigene signature including pyroptosis-related genes and verified it using the two GEO cohorts. A pyroptosis-related gene signature was created by combining several bioinformatics and statistical methodologies to predict patient prognosis and responses to immunotherapy and chemotherapy. Furthermore, a nomogram based on the gene signature and clinicopathological markers was created to better classify the risk and quantify the risk assessment of individual patients. RESULTS: A pyroptosis-related gene signature consisting of 15 genes was established. The pyroptosis-related gene signature classified the patients into two groups: high-risk and low-risk. When combined with clinical variables, the risk score was discovered to be an independent predictor of overall survival (OS) in BC patients. Some immunological pathways and genes were linked to pyroptosis, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) evaluations. Patients in the high-risk group had a worse prognosis and were not very sensitive to immunotherapy. However, several chemotherapeutic agents were predicted to have greater potential for patients in the high-risk group. Finally, a nomogram was developed that included a classifier based on the 15 pyroptosis-related genes, tumor stage, age, and histologic grade. This nomogram demonstrated good classification capacity and might help with clinical decision-making in BC.


Asunto(s)
Neoplasias de la Mama , Piroptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos , Nomogramas , Pronóstico , Piroptosis/genética
20.
Mol Ther Oncolytics ; 24: 114-126, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35024438

RESUMEN

Sarcomas are a heterogeneous group of rare mesenchymal tumors. The migration of immune cells into these tumors and the prognostic impact of tumor-specific factors determining their interaction with these tumors remain poorly understood. The current risk stratification system is insufficient to provide a precise survival prediction and treatment response. Thus, valid prognostic models are needed to guide treatment. This study analyzed the gene expression and outcome of 980 sarcoma patients from seven public datasets. The abundance of immune cells and the response to immunotherapy was calculated. Immune-related genes (IRGs) were screened through a weighted gene co-expression network analysis (WGCNA). A least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish a powerful IRG signature predicting prognosis. The identified IRG signature incorporated 14 genes and identified high-risk patients in sarcoma cohorts. The 14-IRG signature was identified as an independent risk factor for overall and disease-free survival. Moreover, the IRG signature acted as a potential indicator for immunotherapy. The nomogram based on the risk score was built to provide a more accurate survival prediction. The decision tree with IRG risk score discriminated risk subgroups powerfully. This proposed IRG signature is a robust biomarker to predict outcomes and treatment responses in sarcoma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...